35 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Антенна волновой канал

Антенна волновой канал

В продолжении темы антенн для цифрового телевидения, сегодня мы с вами, уважаемый аноним, рассмотрим подробнее весьма популярную антенну Yagi-Uda (или «Ягу», или Волновой канал). Антенна довольно капризна в изготовлении, о чем мы уже говорили, но она настолько популярна у антенных DIY-шников, что мы просто не можем обойти эту тему стороной. С другой стороны, в отличии от СВЧ диапазона, в диапазоне ДМВ, где и вещает цифровое телевидение, DIY-шнику вполне под силу изготовить антенну с хорошим усилением без настройки по приборам. Под катом представлены две конструкции Yagi-Uda для DVB-T2 из доступных материалов.

Однако, прежде чем мы с вами рассмотрим практические конструкции, анониму далекому от теории антенн необходимо уяснить для себя несколько важных моментов:

  • Прежде всего, Yagi-Uda — это не просто конструкция антенны, это — очень большой класс антенн, включающий в себя огромное число подклассов и несметное количество практических конструкций. Волновой канал может быть как узкополосный, так и широкополосный, иметь совершенно различное входное сопротивление и при этом содержать разное число элементов. Обычно, при прочих равных условиях, более длинная антенна, с бóльшим числом элементов имеет бóльшее усиление.
  • Представленный на нашем сайте калькулятор Yagi-Uda конструкции DL6WU рассчитывает узкополосную антенну подкласса Long-Yagi с входным сопротивлением 200 Ом, которая была специально разработана для любительской УКВ радиосвязи. Очевидно, что такая антенна совершенно не пригодна для приема DVB-T2.
  • Для приема цифрового телевидения нам потребуется широкополосная Yagi-Uda, перекрывающая по критерию КСВ

Пластинчатая Yagi-Uda для DVB-T2 из оцинковки на диэлектрической стреле.

Первая конструкция — наиболее дешевый «гаражный» вариант. Она изготовлена из полосок оцинковки шириной 15 мм и толщиной от 0,5 до 1 мм. Полоски размещены на диэлектрической стреле, например деревянной, из соснового бруса, обработанного антисептиком и лаком. Конструкция состоит из петлевого вибратора, сдвоенного рефлектора и десяти директоров. Антенна не способна перекрыть весь ДМВ диапазон по критерию КСВ Размеры пластинчатой Ygi-Uda

Входное сопротивление антенны 300 Ом. Усиление — от 8,5 dBi на нижнем участке рабочего диапазона до 14,5 dBi на верхнем. Подавление заднего лепестка диаграммы направленности не хуже 17 dB. КСВ в пределах рабочего диапазона не превышает двух. При таком КСВ антенна способна устойчиво работать совместно с современным малошумящим антенным усилителем. Более подробно, с графиками, характеристики антенны можно посмотреть по первой ссылке в конце статьи, а по четвертой ссылке представлена семиэлементная конструкция с полосой пропускания 470..690 МГц и усилением 8..12 dBi.

Yagi-Uda для DVB-T2 из трубок на металлической стреле.

Вторая конструкция с уголковым рефлектором похожа на ту, что изображена в начале статьи, только с 12-ю директорами. Она несколько сложнее в изготовлении и под силу более продвинутым DIY-шникам. Входное сопротивление антенны также 300 Ом и она тоже устойчиво работает совместно с антенным усилителем.

Директоры и элементы рефлектора антенны сделаны из дюралюминиевых трубок диаметром 6 мм, для изготовления вибратора используется трубка диаметров 8 мм. Бум и уголковый рефлектор изготовлены из дюралевого профиля 15х15 мм. Элементы антенны не изолированы от бума, при этом бум монтируется на металлическую заземленную мачту, что позволяет защититься от атмосферной статики. В этом преимущество данной конструкции перед предыдущей. Вибратор крепится на нижнюю грань стрелы, директоры и элементы рефлектора запрессовываются внутри бума. Оси директоров смещены вверх относительно оси стрелы на 3,5 мм (или 4мм от верхней грани бума до оси директора), в результате чего они фактически находятся внутри бума непосредственно по его верхней гранью. Это если антенна расположена так как на фото и чертеже, конечно же ее можно и развернуть на 180° относительно оси стрелы. Конструктивные размеры антенны можно видеть на следующем изображении:

Рабочий диапазон антенны по критерию КСВ

Конечно же это всего лишь два примера широкополосной Yagi-Uda для дециметрового диапазона. В зависимости от условий приема вам могут понадобится и короткий трехэлементный волновой канал и четырехэлементный и т.д. Разнообразие этого класса антенн бесконечно. Помочь подобрать оптимальный вариант вам помогут ссылки на подобные оптимизированные конструкции антенн Yagi-Uda для приема цифрового телевидения.

  1. 2R10D Uda-Yagi UHF TV @ 470-690 MHz @ 300 Ω — первая антенна из полосок оцинковки на диэлектрическом буме (подробные характеристики);
  2. 6R12D Beta-19H v3 / Corner Uda-Yagi UHF TV (470-710 MHz) — вторая антенна из трубок на металлической стреле (подробные характеристики);
  3. 1R1D (3-EL) Uda-Yagi UHF TV — короткие широкополосные трех и четырехэлементные яги, оптимизированные для ДМВ диапазона, с усилением около 6 и 8 dBi соответственно;
  4. 1R5D Uda-Yagi UHF TV 470-690 MHz @ 300 Ohm — семиэлементный волновой канал для DVB-T2 из полосок оцинковки на диэлектрическом буме с усилением 8..12 dBi;
  5. Yagi Antennas — большой набор оптимизированных волновых каналов с готовыми моделями для симулятора 4NEC2;
  6. Программа YagiCAD от VK3DIP — хорошая программа для генерации моделей Yagi-Uda с экспортом модели для 4NEC2;
  7. Широкополосные Уда-Яги — теория от DL2KQ;

Каталог радиолюбительских схем

Унифицированные антенны типа «волновой канал»

Очень часто в загородной местности, удаленной от ТЦ на 40—70 км, используются трехэлементные антенны типа «волновой канал» с простым или петлевым вибраторами, антенны из длинных проводов и некоторые типы веерных и комбинированных антенн.

Антенна типа «волновой канал» — эффективная направленная антенна, простая по конструкции, широко используется для приема телепередач, а также в профессиональной и любительской радиосвязи.

Эти антенны обладают хорошими направленными показателями, дают большое усиление по мощности и обеспечивают дальний прием телесигналов на границе зоны прямой видимости или за ее границей, в зоне полутени, где напряженность электромагнитного поля имеет небольшую величину.

Устройство, конструктивные особенности, принцип действия и электрические параметры антенн типа «волновой канал» подробно рассмотрены в научно-технической литературе.

В настоящее время применяются антенны промышленного изготовления, рассчитанные на прием частоты одного канала. Существуют и многоканальные антенны типа «волновой канал», но их коэффициент усиления в 2—3 раза меньше, чем у одноканальных. В радиолюбительской практике антенны типа «волновой канал» изготавливаются редко, так как требуют достаточной точности сборки и весьма критичны по своим электрическим параметрам к настройке.

Для того чтобы антенна удовлетворительно работала в условиях, где напряженность электромагнитного поля незначительна, и можно было бы получить необходимое отношение сигнал — шум на входе телевизора, надо иметь большой коэффициент усиления, а это возможно только в сложных конструкциях антенн.

Несмотря на простоту конструкции и возможность получения высокого усиления и большого коэффициента защитного действия, антенна типа «волновой канал» имеет ряд недостатков. Как отмечалось выше, электрические параметры и технические характеристики этих антенн зависят от точности их изготовления, сборки и настройки, поэтому в условиях домашней мастерской изготовить антенну типа «волновой канал» с требуемыми характеристиками, при большом числе конструктивных элементов практически не представляется возможным. Незначительные неточности при сборке антенны могут привести к серьезному ухудшению направленных свойств и уменьшению коэффициента усиления.

Подключение антенного снижения из коаксиального кабеля осуществляется с помощью УСС. Кроме этого, учитывая, что антенны типа «волновой канал» являются относительно узкополосными, их использование для работы в диапазонах нескольких каналов ограничено. На границе прямой видимости применяют различные варианты антенн этого типа, имеющие 5—10 пассивных вибраторов.

Антенна типа «волновой канал» состоит из одного или нескольких простейших пассивных вибраторов, расположенных вблизи активного вибратора. Все вибраторы размещаются в одной горизонтальной плоскости параллельно друг другу. Закрепляются они посередине общей, стрелы, в качестве которой используется металлическая труба (деревянный брусок), создающая достаточную механическую прочность.

Все основные элементы антенны изготовляются из металлических тонкостенных трубок небольшого диаметра. Пассивные вибраторы выполняются из неразрезных трубок и закрепляются на стреле без изоляторов. Пассивный вибратор, находящийся за активным вибратором со стороны, противоположной направлению на ТЦ, называется рефлектором. Как правило, антенны типа «волновой канал» имеют один рефлектор. Пассивные вибраторы, расположенные впереди активного вибратора, называются директорами. У активного вибратора полоса пропускания несколько шире, чем у пассивного; кроме того, он крепится к стреле без изоляторов, поэтому и качестве активного вибратора используется петлевой вибратор, о котором рассказывалось выше (см. гл. 1). Все пассивные вибраторы прикрепляются в некоторых случаях (например, когда стрела из дерева) к стреле с помощью крепежных деталей — болтов или шурупов, а затем соединяются в местах крепления между собой проводником и заземляются.

Наиболее надежной и долговечной является цельносварная конструкция из трубок, когда все вибраторы привариваются к стреле в точках крепления. Стрела при этом должна быть заземлена. Длины вибраторов антенны типа «волновой канал» различаются между собой.

Длина активного вибратора А = 0,5 lдл, рефлектора В = 1,1. 1,2)А, директоров — несколько меньше длины волны. Диаметр трубок вибраторов выбирается из числа имеющихся в наличии из ряда от 8 до 30 мм. Расстояние между вибраторами определяется так: а = (0,1. 0,25)lдл.

Размеры определяются параметрами антенны, которые в свою очередь зависят от изменения количества вибраторов. Увеличение количества вибраторов приводит к повышению коэффициента усиления и к снижению входного сопротивления антенны, при этом характеристика направленности антенны становится более узкой, сужается также полоса пропускания частот, что вызывает ухудшение четкости принимаемого изображения и ослабление сигналов звукового сопровождения. Поэтому при выборе антенны ставьте цель: получить наивысший коэффициент усиления при минимально необходимой полосе пропускания.

Антенна типа «волновой канал» работает одинаково как на прием, так и на передачу, диаграмма ее направленности остается при этом без изменений. Питание антенны в любом случае прикладывается к входным контактам платы питания, как это было показано ранее, например к шлейф-вибратору Пистолькорса, в зоне, где существует определенная напряженность электромагнитного поля высокой частоты. Активный и пассивные вибраторы работают в этом поле, которое наводит ЭДС. Под действием ЭДС в вибраторах текут токи, амплитуда и фаза которых зависят от их длины и расстояний до активного вибратора. Длина рефлектора и его расстояние до активного вибратора подбираются такими, чтобы поля, созданные рефлектором и активным вибратором в одном направлении, компенсировались.

Рефлектор обеспечивает получение однолепестковой диаграммы направленности, которая достигается при длине рефлектора, равной lдл/2, и располагается на расстоянии 1/4lдл. сзади вибратора. Директоры способствуют сужению основного лепестка диаграммы направленности, изготавливаются несколько короче половины длины волны и имеют сопротивление емкостного характера.

Основные параметры антенны типа «волновой канал» обеспечиваются взаимосвязанными размерами отдельных элементов конструкции.

Двухэлементная антенна типа «волновой канал» (рис. 8) предназначена для приема телесигналов на одном выбранном канале телевидения в местах, где применение полуволновых вибраторов (ПЛРВ, ПЛНВ) не дает положительных результатов, в тех случаях, когда вибратор принимает как прямой, так и отраженный лучи, а на экране телевизора изображение нечеткое и двоится. Дальность приема сигналов составляет 40 км при высоте приемной антенны 15—20 м.


Рис.8. Наружная двухэлементная антенна типа «волновой канал»:
1—рефлектор; 2—стрела; 3—штанга(мачта); 4—активный вибратор; 5—УСС.

Антенна волновой канал

Прохожий
Скажите пожалуйста, почему вибраторы антенны «Волновой канал» уменьшаютя в длине по мере их отдаления от петлевого вибратора

Это не вибраторы, это директоры. Вибратор там один (петлевой в вашем случае).

И скорее всего обсуждается не чистый волновой канал, а какая то широкополосная логопериодика — а там фокусы разные бывают.

Прохожий
для приёма не конкктретной какой-то частоты, а полосы частот

если сумеетте найти советскую ДМВ антенну, неастроенную на один-единствненный Птерский Канал, то там увидите директоры абсолютно одинаковые, и одинаковое расстояние между ними.

т.к эта антенна юыла настроена на одну-единственную частоту

Jar1980
отходя от резонансных размеров, где входное сопротивление чисто активно, мы вносим реактивность, которая и сдвигает фазу
Чтобы сдвиг фаз не менялся со временем, частота вибраторов должна быть одинаковой (т.е. длины одинаковыми).

на одинаковом расстоянии друг от друга в принципе, возможна, но эффективна только при небольшой длине «бума»
Вот и хотелось бы объяснения на пальцах (ибо интерес непрактический) почему одинаковые директора при большой длине антенны дают меньший коэфф. усиления (для длины волны на которую антенна настроена), чем антенна с разными по длине вибраторами. Или это не так?

Чтобы сдвиг фаз не менялся со временем, частота вибраторов должна быть одинаковой (т.е. длины одинаковыми).
Частота будет одинаковая, и равная частоте возбуждения. А вот фаза будет зависеть от того, выше или ниже резонанса эта частота.
Сопротивление учитывать — это уже когда надо точно посчитать усиление, либо когда сопротивление излучения очень мало и омические потери становятся существенными (или когда проволочная «Яга» делается из очень тонких проводов).

+1, поэтому добавлю свои ламерские вопросы

а) для ТВ-быта, для частот до 1 ГГц — используют волновой канал,
а после 4 ГГц, для спутников — ужЕ тарелки

какова граница «эффективности»(не знаю чего) между этими системами?

б) на луноходе, и на др. КА, на картинках: изображены антенны, выглядящие как сабж, но имеющие директоры в виде дисков, или, даже — в виде одной длинной спирали
Это тоже сабж?
А на какие частоты? Т.е., если «на высокие»спутниковые», то почему не используется тарелка?

ЗЫ
гуглитьчитать вики лень — извините
обращаться к спецам по эфирке http://antenna.spb.ru/ при «моем непрактическом интересе» — вроде бы не совсем в тему.

Заранее благодарю за мое просвещение

SergeYH
а) для ТВ-быта, для частот до 1 ГГц — используют волновой канал,
а после 4 ГГц, для спутников — ужЕ тарелки

какова граница «эффективности»(не знаю чего) между этими системами?

У тарелок диаграмма направленности гораздо острее, чем у Яги. Можно точно настроиться на нужный спутник. А на более низкие частоты тарелка будет слишком большой.

Кроме того, Яга гигагерц на 6 или 14. Её только с микроскопом собирать
Полезная площадь мизерная, никакого сигнала на неё не наловишь.

Добавление от 13.06.2009 13:29:

на луноходе, и на др. КА, на картинках: изображены антенны, выглядящие как сабж, но имеющие директоры в виде дисков, или, даже — в виде одной длинной спирали
Это тоже сабж?

Гуглите, на каких частотах работала связь с луноходом. Мне лень, уж извините

«двойной зигзаг Харченко»
.
китайцы испохабили хорошую конструкцию

Так и называются — спиральные

Яга гигагерц на 6 или 14. Её только с микроскопом собирать
Полезная площадь мизерная

а разве нельзя увеличивать площадь кратно частоте?
Или для увеличения сигнала это ничего не даст?

Добавление от 14.06.2009 10:07:

Прохожий
И насколько помню, сопротивление на частоту резонанса не влияет. А если даже это и было бы так, то все равно было бы непонятно, почему более дальние директора надо уменьшать.

Как правильно отметил Alex_C1234, скачайте уже из интернета книгу Ротхаммеля «Антенны». Она написана языком, понятным даже старшекласнику. На страницах 221-230 всё это разжёвано и в рот положено. Можно сразу брать и делать антенну. Правда, без теоретических выкладок. Но я думаю, Вам они не очень нужны

тогда осмелюсь на еще более детские вопросы, ко всем

тарелка была «легко изобретена» из древних опытов с оптикой,
а все, кроме штырей — это сплошная эмпирика?
Или есть какие-то «электромеханические аналогии»(тм), позволяющие изобретателям изобретать странные (на взгляд ламера) формы антенн?

т.е., плоские волны можно как-то представить, наблюдая волны на воде,
а для круговой поляризации есть какие-нить наглядные=визуальные метафоры?

спасибо, но это опять «недостатчно визуально» — для меня

т.е., из учебника картинка со спиралью про круговую поляризацию — «в (моем) быту» трудно представима

Добавление от 16.06.2009 20:31:

SergeYH
из учебника картинка со спиралью про круговую поляризацию — «в (моем) быту» трудно представима
А там и представлять особо нечего. Когда СССР начинал запускать чтось «для исследования космического пространства» об этом мало кто думал, но ряд международных договоров был подписан. Амеры начали чесать репу чуток раньше, ТВ-вещание на их континент больше применяет круговую поляризацию т.к. два близких источника сигнала в этом случае легче разделить разнонамотанными спиралями. Конфликт случился в 90-лохматых когда старая советская железяка серии Космос вместо чтобы сдохнуть гдесь на орбите_захоронения продолжала эксплуатироваться, а янки решили что согласовывать параметры своего нового геостационара со страной которой уже нет как бы и незачем

спасибо, особенно за интересные подробности

Alex_C1234
Что-то далеко отклонились от волновых каналов.
— В реальных условиях разделение примерно 25 dB, почитайте Ротхаммеля

И не читая могу вспомнить что поворот волновых каналов т.е. «ёлочек» У-Яги на 90 0 даст не более +-3dB

Основы радиолокации

Антенна Яги (волновой канал)

Рисунок 1. Составные элементы антенны Яги

Рисунок 1. Составные элементы антенны Яги

Антенна Яги (волновой канал)

Антенны Яги относятся к продольным излучателям и используют в своем составе элементы, возбуждаемые излучением. Этот тип антенн получил свое название по имени одного из его изобретателей, японского профессора Яги. Иногда используется наименование «антенны Яги-Уда», а в русскоязычных источниках такие антенны называют антеннами типа «волновой канал». Эта конструкция антенн была специально разработана для диапазона радиоволн от высоких частот (ВЧ, HF) до верхней части диапазона очень высоких частот (ОВЧ, UHF). Антенны Яги очень популярны по причине простоты их конструкции и относительно высокого коэффициента усиления. Как правило, их относят к высоконаправленным антеннам. Помимо радио, антенны этого типа применяются и в радиолокации.

В антеннах Яги используется взаимодействие между элементами, в которых возникают стоячие волны тока, в результате чего возникает бегущая волна с выраженной диаграммой направленности. Такая антенна состоит из одного или нескольких активных вибраторов (диполей) и дополнительных пассивных элементов. Элементы антенны Яги обычно привариваются к проводящему стержню или трубке, называемому стрелой. Точка соединения соответствует средине элемента. Такая конструкция имеет целью только обеспечение механической прочности антенны и не влияет на ее рабочие характеристики. Поскольку активный элемент имеет ценральное питание, он не приваривается к опорному стержню. Входной импеданс антенны может быть увеличен путем использования петлевого вибратора в качестве активного элемента.

Элементы, из которых состоит антенна Яги, показаны на Рисунке 1. Расстояния между ними выбираются не одинаковыми. Единственный элемент антенны, который возбуждается от передатчика, это активный вибратор. Все остальные элементы являются пассивными, однако играют важную роль в формировании излучения антенны. Излучение элементов складывается в фазе при распространении в прямом направлении и в противофазе — в противоположном. Ширина полосы частот антенны Яги определяется длиной и диаметром элементов, а также расстоянием между ними. Для большинства конструкций ширина полосы обычно составляет всего несколько процентов от частоты, на которую проектировалась антенна.

Антенна Яги, изображенная на Рисунке 1, имеет один рефлектор, один петлевой вибратор в качестве активного элемента и три директора. В общем, чем больше используется пассивных элементов (директоров и рефлекторов), тем выше коэффициент усиления антенны. Увеличение количества этих элементов приводит к уменьшению ширины луча антенны, но, вместе с этим, и к сужению ее полосы частот. Поэтому правильная настройка антенны имеет большое значение. Коэффициент усиления антенны не увеличивается прямо пропорционально увеличению количества используемых элементов. Например, трехэлементная антенна Яги имеет относительное усиление по мощности от 5 до 6 дБ. Добавление дополнительного директора приводит к увеличению этого параметра примерно на 2 дБ. Однако добавление последующих директоров имеет все меньший и меньший эффект.

Принцип действия

Рисунок 2. Двухэлементная решетка из полуволнового резонансного диполя в качестве активного элемента и более короткого диполя в качестве пассивного элемента

Рисунок 2. Двухэлементная решетка из полуволнового резонансного диполя в качестве активного элемента и более короткого диполя в качестве пассивного элемента

Основной элемент Яги имеет три составные части. Длина каждого пассивного элемента отличается от половины длины волны, являющейся резонансной для антенны. Если она больше (обычно на величину около 15 процентов), то такой элемент имеет индуктивные свойства и работает как рефлектор. Если же длина элемента меньше половины длины волны (с шагом 5 процентов), то элемент имеет емкостные свойства и определяется как директор, поскольку он вызывает усиление излучения в направлении от активного вибратора к директору. Для понимания принципа действия рассмотрим резонансный диполь и добавим к нему пассивный элемент, расположив его на небольшом расстоянии. Излучение диполя вызывает возбуждение пассивного элемента, причем с разностью фаз, определяемой расстоянием между ними. Емкостной характер из-за меньшей длины пассивного элемента приводит к дополнительной задержке токов и напряжений в этом элементе и, соответственно, в фазе излучаемого им поля. Поскольку разность фаз соответствует расстоянию между элементами, то оба излучаемых поля (активного и пассивного элементов) синфазны в одном направлении и противофазны в другом направлении. Поскольку амплитуды колебаний в элементах антенны не одинаковы, сумма излучаемых ими полей увеличивается в одном направлении и уменьшается в другом.

Рисунок 3. Трехэлементная антенна Яги, суперпозиция колебаний, вызванных активным элементом, рефлектором и директором

Рисунок 3. Трехэлементная антенна Яги, суперпозиция колебаний, вызванных активным элементом, рефлектором и директором

Возникновение одного поперечного луча при использовании одного активного вибратора и одного пассивного элемента позволяет предположить, что еще большее усиление может быть достигнуто использованием рефлектора и директора по разные стороны от активного вибратора. В действительности так и есть. Трехэлементная антенна Яги имеет коэффициент усиления, достигающий 6 дБ. В рефлекторе, имеющем длину больше половины длины волны, индуцируется ток, который, в свою очередь, является источником волны, гасящей волну от активного вибратора. Директоры несколько короче, их сопротивление носит емкостной характер, и они должны быть расположены на расстоянии, несколько меньшем половины длины волны, для обеспечения синфазности волн от активного вибратора и от директоров. Коэффициент усиления антенны Яги может быть увеличен путем увеличения количества элементов, однако каждыей новый дополнительный элемент будет вносить все меньший и меньший вклад. Для умеренного количества элементов усиление в прямом направлении пропорционально этому количеству.

Массив элементов Яги можно описать как структуру с медленной волной. Поэтому антенны Яги относятся к категории антенн бегущей волны. В такой структуре поддерживается неубывающая волна в прямом направлении, а токи в директорах имеют примерно одиноковые значения, хотя и с увеличивающейся фазовой задержкой. Фазовая скорость волны в этом случае составляет от 0,7 до 0,9 скоростей света.

Figure 4: 3D representation of the antenna pattern of a Yagi antenna having 8 elements including folded dipole fed with a power of 11 dBm

Рисунок 4. Трехмерное представление диаграммы направленности антенны Яги, имеющей 8 элементов, включая петлевой вибратор, запитываемый мощностью 11 дБм

Рисунок 5. Радиолокатор, в котором используется решетка антенн Яги (П-18 «Терек», по классификации НАТО «Spoon Rest D») с коэффициентом усиления G = 69

Издатель: Кристиан Вольф, Автор: Андрей Музыченко
Текст доступен на условиях лицензий: GNU Free Documentation License
а также Creative Commons Attribution-Share Alike 3.0 Unported License,
могут применяться дополнительные условия.
(Онлайн с ноября 1998 года)

0 0 vote
Article Rating
Ссылка на основную публикацию
ВсеИнструменты
×
×
Adblock
detector